Q.P. Code: 20CE0161

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

B.Tech III Year I Semester Regular Examinations March-2023 SOIL MECHANICS

(Agricultural Engineering)

Time: 3 hours Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Briefly explain different types of soil structures which can occur in nature. CO₁ L1 6M b Explain consistency limits of soil with the help of a typical graph drawn CO₁ L1 6M

between water content and volume of soil and show different states of soil.

A test for the relative density of soil in place was performed by digging a small hole in the soil. The volume of the hole was 400 ml and the moist weight of the excavated soil was 9 N. After oven drying the weight was 7.8 N. Of the dried soil, 4 N was poured into a vessel in a very loose state, and its volume was found to be 270 ml. The same wight of soil when vibrated and tamped had a volume of 200 ml. Determine the relative density

UNIT-II

a What is a flow net? Describe its properties and applications. CO₂ **L2** 6M

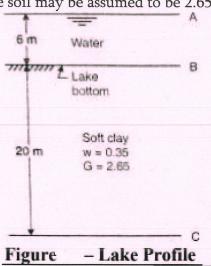
b The capillary rise in silt is 50 cm and that in fine sand is 30 cm. What is the difference in the pore size of the two soils?

CO₂ L3 6M

L3

L3

12M


12M

CO₁

CO₂

OR

Compute the total, effective and pore pressure at a depth of 20 m below the bottom of a lake 6 m deep. The bottom of lake consists of soft clay with a thickness of more than 20 m. The average water content of the clay is 35% and the specific gravity of the soil may be assumed to be 2.65.

UNIT-III

Give a detailed account on effect of compaction on engineering properties of L1 12M CO₄ soils.

	Q.P. Code: 20CE0161	R20		
	OR			
6	Derive the equation for vertical stress under a strip load (i) at a point below the	CO3	L2	12M
	center of the strip (ii) point not below the center of the strip. UNIT-IV	16162		
7	A homogeneous clay layer 12 m thick is expected to have an ultimate	CO5	L4	12M
	settlement of 332 mm. After a time span of 3 years, the average settlement was			
	measured to be 152 mm. How much longer will it take for the average			
	settlement to attain 237 mm?			
	OR			
8	Define the following items: (i) Coefficient of compressibility (ii) Coefficient of	CO5	L1	12M
	volume change (iii)Compression index (iv)Expansion index (v) Recompression			
	index			
	UNIT-V			
9	With the help of sketch explain how Direct Shear Test is conducted. What are	CO6	L1	12M
	its merits and demerits?			
	OR			
10	a What is liquefaction of sands? How can it be prevented?	CO6	L1	6M
	b Explain the effect of initial density on changes in void ratio with the help of	CO6	L1	6M
	Shearing strain Vs Void ratio graph. Define Critical Void Ratio locate it on			

*** END ***

the Shearing strain Vs Void ration graph.